Avto505.ru

Авто 505
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Клапан вентиляции масляного картера

Система вентиляции картера двигателя

В столь сложном механизме, каковым является современный двигатель внутреннего сгорания, не может быть каких-то мелочей. Любая система, даже если она имеет простейшее устройство, выполняет строго определенную функцию, внося свой вклад в бесперебойную работу силового агрегата. О существовании многих из систем рядовой автолюбитель даже не подозревает, хотя нарушение их нормального функционирования самым серьезным образом оказывает влияние на работоспособность двигателя в целом. Важнейшая роль в ДВС отведена так называемой вентиляции картера. О том, каковы ее назначение, принцип работы и состав компонентов, поговорим в данной статье.

Не секрет, что между деталями цилиндро-поршневой группы существуют строго определенные зазоры, соответствующие установленным разработчиками допускам. Какими бы минимальными ни были эти зазоры, через них из камеры сгорания в картер проникают несгоревшие частицы, которые смешиваются с масляными парами, образуя так называемые картерные газы. Они оказывают негативное влияние на качество находящегося в картере моторного масла, которое с ростом пробега автомобиля неуклонно ухудшается, теряются смазывающие свойства. Стоит отметить, что подобный эффект проявляется как у масел бюджетного класса, так и у дорогих образцов от именитых брендов. Попадающие в картер двигателя пары топлива и воды неизбежно разжижают масло, превращая его в масляную эмульсию. Не стоит забывать и о том, что в процессе работы в цилиндрах мотора создается очень высокое давление. В связи с этим газы, вырывающиеся с огромной силой, попадают в картер, грозя выдавливанием сальников и последующим вытеканием масла.

Благодаря системе вентиляции картера выводятся прорвавшиеся отработавшие газы, а также обеспечивается и поддерживается нормальное рабочее давление, что благотворно влияет не только на состояние моторного масла, но и на надежность, продолжительность работы двигателя.

Картерные газы: Работа системы вентиляции, маслоуловитель и клапан PCV

Введение

Это вторая версия статьи, созданная вместе с участниками группы проекта, в ней исправлены грубые ошибки по работе вентиляции картера двигателя для вывода картерных газов. Итак система вентиляции картера необходима для уменьшения вредных веществ, выходящих из картера двигателя в воздух. В картере безусловно находятся пары бензина, воды и пары масла — все это картерные газы. Скопление картерных газов ухудшает свойства и состав моторного масла, разрушает металлические части двигателя, в Honda Civic при сбоях в системе или же агрессивной эксплуатации двигателя, количество паров возрастает и двигателя покрывается нагаром изнутри. Очевидным фактом сбоя ялвяется понижение мощности, увеличение расхода топлива. Визуально это видно как нагар на дроссельной заслонке, нагар на впускном коллекторе.
Нагар в любом его проявлении является негативном факторе влияющем на характеристики двигателя. Уменьшается диаметр дроссельной заслонки, это значит меньше воздуха будет поступать во впускной коллектор. Нагар на впускном коллекторе уменьшит его объем а значит и отдачу. Закупорка каналов соотвественно введет к неправильном составу смеси и воздушному голоданию.

Нагар на дроссельной заслонке, впускном коллекторе, и даже на кольцах форсунок

Схемы работы системы вентиляции картера

Система вентиляции картера Honda Civic, практически ни чем не отличается от большинства легковых автомобилей с ДВС. В качестве источника потока воздуха используется впускной тракт. Свежий поток воздуха попадает в ГБЦ, далее в двигатель, поток проходит до низа двигателя в картер, и выводит с собой через камеру сапуна отработанные газы на вторичную переработку во впускной коллектор. Такая система нужна для переработки материала, негативно влияющего на экологию. Именно поэтому эта система закольцована в двигателе а не выходит после камеры сапуна наружу.
Как вы понимаете данная система кроме контура вентиляции и впускного тракта имеет еще два компонента, камера сапуна выполняющего функцию приемника тяжелый частиц и клапан PCV (Positive Crankcase Ventilation) — клапан принудительной вентиляции картера. PCV необходим для направления движения потока. Немного иллюстраций для понимания терминов.

Типовая схема вентиляции картерных газов на горизонтальном впускном коллекторе D16Z6

Типовая схема вентиляции картерных газов на вертикальном впускном коллекторе D14A4

Камера сапуна сзади двигателя около масляного фильтра

Проблема нагара в системе

Откуда идет нагар? Допустим двигатель новый, и функцию примитивного фильтра выполняет камера сапуна. В котором масло оседает, а газы уходят ка полагается через клапан PCV во впуск снова в двигатель. Все идеально, тяжелые части масла отделяются, а насыщенный бензином поток идет на переработку. Но это в идеальном случае. Во первых со временем камера сапуна загрязняется просто до жутчайшего состояния, вентиляция ухудшается. Так как идеального ничего не бывает, то картерные газы все равно несут в себе масло, даже после сапуна. И клапан PCV начинает загрязняться, и в итоге он забивается маслом, грязью, и тд. В итоге циркуляция газов нарушается, в зависимости от того в каком положение клапан «заклинило» будут те или иные последствия.

  • PCV всегда открыт, дополнительный подсос воздуха мимо дроссельной заслонки через ГБЦ — более бедная смесь, в следствие чего добавление компьютером больше топлива, повышенный расход, не устойчивая работа Холостого Хода
  • PCV всегда закрыт, газы копятся в двигателе, повышение давление в картере, может повысится риск «выдавливания» сальников коленвала от давления масла. Картерные газы выходят через ГБЦ обратно во впускной тракт, нагар оседает на дроссельной заслонке, впускном коллекторе, и форсунках, в конечном счете доходит и до поршней.

Расположение PCV клапана рециркуляции в двигателе Honda

Режимы работы двигателя и клапана PCV

Решение проблемы нагара

Решение простое, необходимо чистить клапан PCV и камеру сапуна. Но это подходит для городского движения. Если вы постоянно давите педаль акселератора, то тут неизбежно все равно будет загрязнение впускного коллектора. Решение пришло из автоспорта, где главное это производительность, в мотоциклах маслоуловитель устанавливался чаще чем в автомобилях. Уловитель масла, маслоуловитель, маслопомойка, маслоотделитель, Oil Catch CanTank это различные названия одного и того же изделия, способного отделить масло из картерных газов. В идеале их нужно две штуки, один на впуск, другой около PCV.

Сливаемое масло из маслоуловителя, все это могло бы стать нагаром в двигателе

Схемотичное устройство простого маслоуловителя

Устройство маслоуловителя и принцип работы

Банка-ёмкость с двумя штуцерами и фильтр отбора для масла внутри банки, все это в любой цветовой гамме. Это примитивное описание устройства, которое стоит по 40-300 долларов. Кроме стоимости прежде всего нужно описать принцип работы. Устанавливается в разрезе шланга от ГБЦ к впускному тракту. На входной штуцер подается картерные газы со смесью паров масла, далее попав в банку этот поток газов попадает в хитрую структуру препятствия.
В одном случае это просто металлическая стенка, по типу как сделаны зажигалки для сигарет. Это самый плохой способ, хотя и работающий.
Второй случай это фильтр поролон, сетка, или же металлическая губка. Это хороший способ для фильтрации, масло будет оседать на проволоке стекать вниз. Использовав поролон, но будет проблема прохода самих газов во впускной коллектор. Чистка такого маслоуловителя тоже будет проблематична.
Самая нормальная система маслоуловителя, спиральная с металлическим фильтром. Поток ударяется в стенку, газы быстро находят выход во впускной коллектор, а тяжелые масляные капли стекают вниз и остаются внутри, во закрытой части маслоуловителя. Остается только слить накопившейся масло во время, есть варианты когда масло обратно попадает в двигатель, тем самым масло из двигателя не уходит почти совсем.

Шланг вентиляции картерных газов для установки маслоуловителя

Топливный фильтр как дешевая замена

Как полумера, топливный фильтр (например ВАЗ), может быть использован. Небольшая стоимость в 1-2 доллара и доступность. Но, такие фильтра рассчитаны на бензин а не на тяжелые масла. Фильтр засорится очень быстро. Итог — закупоривание канала, вентиляции картерных газов, и их циркуляция и накопление внутри двигателя во всех его частях. Особенно это заметно при низких температурах. Далее падение мощности, с очень большим шансом не стабильной работы двигателя, на пример двигатель начинает троить.

Читать еще:  Какой размер зимней резины ставить на приору

Топливный фильтр, как полумера к решению проблемы масла во впускном коллекторе.

Случайная статья узнай что то новое

Данная статья актуальна для автомобилей Honda выпуска 1992-2000 годов, таких как Civic EJ9, Civic EK3, CIVIC EK2, CIVIC EK4 и CIVIC FERIO (частично). Информация будет актуальна для владельцев Honda Integra в кузовах DB6, DC1, с моторами ZC, D15B, D16A.

  • Автоэкзотика — 1 мая
  • Jap Days — 22 Июня
  • JAP CAR FEST — 19-21 июля
  • Москва
  • Санкт-Петербург
  • Минск
  • Уфа

EJ9 и EK3 — записки инженера о Honda Civic 1998. 2010 – 2019 . Вся информация приводится для ознакомления, автор не несет ответственности за вред полученный в результате применения материалов сайта, находясь на сайте вы подтверждаете своё согласие с этим. Сделано Хондоводом для Хондоводов. Автор: Илья Серб Все изображения имеют авторство Карта сайта Honda Civic, всем VTEC!

Что такое клапан PCV

Теоретически без этого клапана система принудительной вентиляции не может работать корректно априори. Ведь именно клапан PCV дозирует подачу картерных газов в самый важный участок — пространство за дроссельной заслонкой, прямо перед камерой сгорания.

Вторая ветка системы, та, которая подключена к впускному тракту до дросселя, контролирует разряжение в коллекторе, а оно в свою очередь диктуется положением дроссельной заслонки.

Клапан PCV — это вовсе не обратный клапан, как думают многие. Да, он не продувается в обратном направлении, но и не имеет просто двух положений, открыто и закрыто. Все намного сложнее. Внутри клапана PCV расположен плунжер, нагруженный пружиной, усилие которой рассчитано в зависимости от объема двигателя, а точнее, от разряжения, создаваемого в коллекторе.

Устройство клапана PCV

Клапан имеет четыре рабочих положения:

  1. Двигатель заглушен. Клапан полностью закрыт, газы не поступают в коллектор, сейчас им там делать нечего.
  2. Двигатель работает на холостых оборотах. В этом режиме в коллекторе разряжение самое высокое, клапан полностью открыт (100%), чтобы обеспечивать подачу газов (по сути, воздуха) в задроссельное пространство. Причем количество газов строго регламентировано и четко контролируется ЭБУ, а ЭБУ уже управляет регулятором холостого хода в зависимости от количества поданного воздуха и ряда других факторов.
  3. Двигатель работает в нормальном режиме средних оборотов и средней нагрузки. Клапан PCV открыт примерно на 50%. Поток картерных газов средний, они эффективно сгорают в цилиндрах.
  4. Режим максимальных нагрузок и высоких оборотов. Клапан PCV открыт на 20-25%, сжигается максимальное количество картерных газов, тем самым давление в картере не опасно для сальников и прокладок, поскольку полностью контролируется благодаря разряжению в коллекторе.

Алгоритм работы клапана вентиляции картерных газов

На Лада Веста система вентиляции устроена таким образом, что по факту всегда работает так, как нормальная система работает в четвертом режиме. Поток газов ограничивается только 1,7-миллиметровым жиклером, встроенным в задроссельный патрубок. В теории расчет был на то, что система будет работать как двухконтурная.

Так реализована схема вентиляции на 8 и на 16-клапанных моторах ВАЗ

Первый контур отрабатывает в зоне оборотов от холостых до 1500 об/мин. Здесь задействован патрубок за дросселем и тот самый 1,7-мм жиклер. Второй контур подключается к вентиляции уже при высоких оборотах, а газы начинают поступать во впускной коллектор до дросселя по шлангу диаметром 18 мм.

Клапан PCV

Высокое разряжение в картерном пространстве не менее опасно для сальников, чем повышенное давление. Чтобы при малом угле открытия ДЗ, а также при резком закрытии дросселя на высоких оборотах в поддоне не создавалось избыточное разряжение, в систему включен клапан ВКГ. Состоит клапан вентиляции картера из подпружиненного плунжера, перемещающегося в гильзе определенного сечения.

В нормальном состоянии, когда двигатель заглушен, возвратные пружины отжимают плунжер, сообщая отрезки канала от коллектора к клапанной крышке. В режиме холостого хода высокое разряжение во впускном коллекторе притягивает плунжер, преодолевая сопротивление пружин. Канал для доступа картерных газов перекрывается. По мере открытия дроссельной заслонки снижается воздействие вакуума на плунжер. Усилием возвратных пружин клапан открывается, сообщая впускной тракт и картерное пространство.

Просто, но не гениально: что может не работать в системе вентиляции картера?

Иногда с автомобилем случаются вещи, которые сильно расстраивают его владельца. Что-то стал жрать масло, дроссельная заслонка постоянно грязная, масло из всех щелей течёт… Даже воздушный фильтр в этом масле. Наверное, пора думать о «капиталке». Деньги, деньги, деньги. Боль, тоска, безысходность. А может, рано точить бритву и наполнять ванну тёплой водой? Может, не всё так плохо, и решение проблемы кроется в маленькой и не такой уж дорогой детальке со странным названием «клапан PCV»?

Теория газов​

Все мы прекрасно помним, что мотор работает вследствие сгорания топливо-воздушной смеси. В момент, когда в камере сгорания начинается этот очень красивый, но невидимый глазу процесс, там резко возрастает давление. Это давление толкает поршень вниз, поршень давит на свою шейку коленвала, а тот выполняет свою непосредственную работы: преобразует поступательное движение шатуна поршня во вращательное, которое передаёт на маховик двигателя. Картинка идеальная, но в жизни, как вы понимаете, что-то всегда идёт не так. В нашем случае не все газы, образующиеся во время горения, выходят потом через выпускной клапан в систему выпуска. Часть их обязательно прорывается в картер. Грубо говоря – под поршень. Происходит это по простой причине: как бы плотно ни прилегали компрессионные кольца, у них всегда есть хотя бы минимальный зазор – иначе поршень просто не смог бы ходить внутри цилиндра. А на холодном моторе этот зазор ещё больше, так что газ, который находится под очень большим давлением, лазейку в картер мотора всегда найдёт. Чем это грозит?

В этих газах есть всё то, чего не любит моторное масло. Не полностью сгоревший бензин, пары воды (они всегда есть в воздухе), частички нагара – всё это оседает в моторном масле. Ничего хорошего, конечно, после этого не происходит: масло усиленно стареет и перестаёт нормально работать. Но это не самое страшное.

Гораздо хуже, что в картере просто не должно быть высокого давления, а картерные газы его сильно увеличивают. Последствия этого процесса очень неприятные. Газы буквально распирают мотор, и он начинает выдавливать из себя всё лишнее. А когда мотор «пучит», лишним ему кажется всё: и картерные газы, и масло. Газы стараются выйти через масляный щуп, выталкивая его наружу, через маслозаливную горловину и все прочие места. В том числе – и через все уплотнения и сальники. Если ему удаются вытолкнуть сальник коленвала, то через него потечёт и масло.

Одним словом, как-то эти газы надо выводить. И для этого придумали систему вентиляции картерных газов.

Открыто и закрыто

Изначально система вентиляции была примитивной – открытого типа (или эжекционная). Помните такое потрясающее слово – сапун? Вот это и было той самой открытой системой вентиляции. Через гордо торчащий сапун в атмосферу выбрасывались картерные газы со всеми их прелестями в виде сажи, масла и прочей гадости. А иногда оттуда ничего не выбрасывалось, потому что особой эффективностью такая система не отличалась.

Не отличалась хотя бы просто потому, что на холостых оборотах давления картерных газов не хватало, чтобы они выводились из мотора. Всё прорвавшееся в картер в нём и откладывалось в масло. Кроме того, всегда была вероятность через сапун хватануть грязного воздуха, который потом оказался бы в картере. Там все примеси из этого воздуха осели бы в масло, а это существенно снизило бы ресурс цилиндро-поршневой группы. В общем, ничего хорошего в сапуне не было, и система прямо-таки требовала серьёзного пересмотра. И в результате такого пересмотра появилась современная система PCV (positive crankcase ventilation) – принудительная система вентиляции.

Системы PCV отличаются по реализации. Они могут быть проще или сложнее, с двумя контурами, с эжекторным насосом, с редукционным клапаном. Но мы рассмотрим самую простую и распространённую систему с одним клапаном PCV. Итак, как это работает?

Читать еще:  Число автомобилей в россии 2018

Разработчики этой системы использовали особенность впускного коллектора: в нём создаётся разрежение. Особенно сильным оно бывает на холостых или минимальных оборотах. Если соединить тот самый воображаемый сапун открытой системы с впускным коллектором, разрежение будет вытягивать картерные газы. Кроме того, они будут поступать опять во впуск, а не в атмосферу, что люто обрадует экологов. Остаётся только решить две проблемы: как дозировать это самое «всасывание» со стороны коллектора и как не дать вместе с картерными газами попасть во впуск маслу и прочим ненужным там фракциям.

Решением первой задачи занимается как раз тот самый клапан PCV. Во время работы на минимальных оборотах он практически закрыт. А значит, в коллекторе остаётся разрежение, а так как в таком режиме выброс картерных газов минимален, даже небольшого их отвода вполне достаточно. По мере роста оборотов коленвала клапан начинает открываться. Это необходимо по двум причинам: во-первых, разрежение падает, а значит, нужно более интенсивно откачивать газы, а во-вторых, количество этих газов растёт. Открытие клапана позволяет удалять большое количество газов даже при небольшом разрежении во впускном коллекторе.

Второй вопрос – это очистка картерных газов. Тут есть несколько способов, но наиболее простой и очевидный – это установка маслоотделителя. В нём есть сложный лабиринт, по которому движутся газы. Во время прохождения лабиринта скорость движения падает, а капельки масла оседают на его стенках, откуда стекают обратно в картер. Более-менее чистый воздух после этого поступает опять во впуск. Конечно, маслоотделители бывают разных конструкций – лабиринтные или центробежные, но задачу они решают одну и ту же.

У системы PCV есть ещё одно небольшое, но важное преимущество: после пуска холодного мотора в мороз в дроссельную заслонку попадает и тёплый воздух из системы вентиляции. Прогрев проходит быстрее и теоретически – менее травматично для холодного пуска. Правда, при условии, что система исправна. А она иногда всё-таки выходит из строя.

Работает или нет?

Существуют десятки способов проверить, работает ли клапан PCV (для краткости – КВКГ, клапан вентиляции картерных газов). Почти все они порождены сумрачным народным гением и сводятся к тому, чтобы проверить, прут ли газы из мотора или нет. Наиболее простой способ – открутить крышку маслозаливной горловины и посмотреть, что произойдёт дальше. Если приложить руку и почувствовать давление валящих оттуда газов – КВКГ не работает. Отчасти правда в этом есть, но не во всём. Потому что если, например, поршневая очень устала жить, то повышенное давление тоже будет. Даже если клапан работает. А на некоторых моторах (например, BMW с Valvetronic, N42, N46 и иже с ними) даже с исправной системой вентиляции некоторое давление может быть, так что этот способ помогает мало. То же самое и насчёт всасывания воздуха. Мол, в исправном моторе крышка будет присасываться к горловине. Обычно – да, но не обязательно. Если всасывается очень сильно, то, возможно, клапан заклинил в открытом положении или у него порвалась мембрана.

Всё то же самое относится и к проверке воздушного фильтра. Масло на этом фильтре – это не обязательно признак почившей системы вентиляции. Оно там может быть из-за той же убитой поршневой группы. Однако если вы уверены, что ЦПГ исправна, а масляный щуп вылетает со своего места, это действительно может быть признаком неисправности системы ВКГ. Особенно если есть сопутствующие проблемы (например, то же масло на воздушном фильтре).

Есть ещё один способ проверки, о котором часто говорят в Интернете, – снять клапан и потрясти им. Если внутри ничего не бренчит, он заклинил. И это тоже не лучший способ диагностики.

Гораздо лучше снять патрубки вентиляции (обычно это сделать не сложно) и посмотреть, что у них там внутри. Если они забиты отложениями, то клапан, скорее всего, тоже забит и, вероятно, не работает. В этом случае патрубки стоит промыть, а клапан просто поставить новый. Заодно есть повод как минимум проверить компрессию: может оказаться, что этот шлак в системе неспроста, и пора подумать о ремонте мотора.

Не стоит забывать о том, что лабиринт маслоотделителя тоже со временем покрывается отложениями. Это приводит к похожим симптомам: в картере растёт давление, возможны течи масла через уплотнения и сальники. В этом случае всё приходится промывать. Самое печальное, что грязные картерные газы могут загадить не только дроссельную заслонку и весь впуск, но и сократить этой дрянью жизнь другой системе – системе рециркуляции отработавших газов EGR. Так что затягивать с ремонтом вентиляции не стоит.

Ну и последнее. Когда маслоотделитель забит, масло может попадать прямо во впуск. Это приводит к дымности, а если система вообще на ладан дышит, то к росту расхода масла. Всё это по симптомам похоже на износ маслоотражательных колпачков или поршневых колец. Не стоит сразу лезть в кубышку (если она вообще есть) и торопиться всё это менять. Иногда достаточно привести в порядок систему вентиляции картерных газов, и проблема решится малой кровью.

Преимущества и недостатки системы вентиляции картерных газов

Система вентиляции картерных газов постоянно видоизменялась с совершенствованием машиностроения. Современные системы вызывают часто ступор у водителей. Все начиналось с обычной трубы, которая выводилась под машину и заканчивается в современных автомобилях продвинутыми системами с маслоотделителями и клапанами разного типа. Самая современная – принудительная система закрытого типа имеет следующие преимущества:

  1. Сведение к минимуму выброса вредных веществ.
  2. Не выдавливаются сальники и прокладки за счет эффективного снижения давления внутри картера.
  3. Увеличивается ресурс моторного масла.
  4. Атмосферный воздух, пыль и влага не попадают в картер.
  5. Хорошая отдача двигателя.

Недостатки системы вентиляции картера.

  1. Замасливание впускного тракта.
  2. Необходимость регулярной чистки от масляного налета.
  3. Увеличение объема картерных газов, если есть даже небольшие отклонения в работе ДВС.

Устройство системы

Особенности устройства и принципа работы системы зависит от конкретной модели двигателя, но типичная конструкция предполагает наличие клапана вентиляции картера, патрубков и маслоотделителя.

Принцип работы

Выхлопные газы, смешавшиеся с парами бензина, из-за образовывающегося давления протекают к маслоотделителю. В корпусе маслоуловителя мелкодисперсные частички масла собираются на стенках фильтрующего элемента. Образовавшиеся капли под воздействием силы притяжения стекают в маслосборник, а отфильтрованные газы через клапан вентиляции картера попадают во впускной коллектор.

Устройство представленной выше системы предполагает наличие интеркулера, который служит для охлаждения воздушного потока. Необходимость в снижении температуры обусловлена не столько работой вентиляции картера, сколько особенностями системы турбонаддува, которой оборудован представленный на схеме двигатель TDI.

Масляные частицы, оседающие на стенках впускного тракта, приводят к уменьшению ресурса ДМРВ, ДАД, ДТВ, способствуют загрязнению дроссельного узла, РХХ. Для впускных коллекторов с выхревыми заслонками опасность еще и в том, что масляная пленка собирает на себе частички пыли и сажи, которые выступают абразивом для привода заслонок. Поэтому большинство современных систем вентиляции картерных газов оборудуются маслоуловителем.

Разделение потоков

Стандартная система вентиляции картера имеет два патрубка подвода газов во впускной тракт. Связанно это с разницей давления перед дросселем и в задроссельном пространстве. В режиме минимальной нагрузки, когда дроссельная заслонка едва открыта, проходное сечение минимально, поэтому наибольшее разрежение как раз в задроссельном пространстве. В режимах большой и полной нагрузки открытая дроссельная заслонка не создает значимого сопротивления протекающему потоку воздуха, поэтому разряжение во впускном тракте минимально. Разделение точек входа позволяет гибко дозировать порцию картерных газов.

Маслоуловитель

Наибольшее распространение получил циклический и лабиринтный способ фильтрации. В наиболее современных системах вентиляции картера применяются оба способа отделения масла.

Лабиринтный метод выступает в качестве стадии грубой фильтрации и служит для отделения крупных частиц масла. Принцип работы уловителя заключается в прохождении потока картерных газов через канал с маслоотражательными пластинами. Соприкасаясь с пластинами, крупные частицы оседают на стенках, после чего стекают в обратную масляную магистраль.

Читать еще:  Вызвать эвакуатор в Москве

На стадии тонкой очистки картерные газы проходят через циклический (центробежный) маслоотделитель. Принцип работы основан на прохождении газов по окружности корпуса отделителя. Под воздействием центробежных сил капли масла, масса которых больше массы выхлопных газов, смещаются наружу и оседают на стенке. После отделения мельчайшие частички масла стекают в обратную магистраль.

Для уменьшения вредного влияния турбулентности газовых потоков на входе в воздушный тракт устройство системы такого типа предполагает наличие выходной успокоительной камеры. Благодаря ей после прохождения центробежного маслоотделителя снижается кинетическая энергия газа. Кроме того, на стенках камеры также оседают мелкодисперсные частицы моторного масла.

В некоторых системах вентиляции картера используется синтетический фильтрующий элемент. При прохождении через него картерных газов частички масла оседают на волокнах, собираются в крупные капли и стекают в магистраль обратного слива.

Клапан PCV

Клапан системы вентиляции картерных газов необходим для ограничения разряжения. Высокое разряжение, как и избыточное давление, может привести к повреждению сальников. Поэтому клапан PCV открывает доступ картерным газам по мере падения разрежения во впускном коллекторе.

В нормальном состоянии клапан возвратной пружиной удерживается в открытом положении. При работе двигателя на холостых оборотах разряжение преодолевает усилие пружины и перекрывает канал, соединяющий картер двигателя и впускной коллектор. Соответственно, по мере открытия дроссельной заслонки и снижения разряжения возвратная пружина приоткрывает канал для доступа газов.

На многих автомобилях VAG с двухступенчатой системой фильтрации работа клапана PCV заключается в прерывании потока от ступени грубой очистки к ступени тонкой очистки.

Симптомы неисправности

Признаки неправильной работы вентиляции картера:

  • повышенный расход масла;
  • обильные запотевания в местах установки сальников, прокладки ГБЦ, БЦ, поддона. По мере износа цилиндропоршневой группы двигателя количество прорывающихся в картер газов увеличивается, поэтому нагрузка на систему возрастает. Но симптомы повышенного давления в картере могут проявить себя и на исправном автомобиле. В морозное время года в патрубках системы скапливается конденсат, который при замерзании полностью блокирует вентиляцию картера. От повреждения сальников часто в таком случае спасает щуп, который выдавливает из посадочного места;
  • двигатель троит, плавают обороты. Причина – негерметичность клапана либо магистрали от клапана к впускному коллектору, из-за которой происходит подсос неучтенного воздуха;
  • моторное масло в воздушном фильтре, патрубке впускного тракта. Причина в забитом фильтрующем элементе;
  • при стоянке и движении на небольшой скорости система кондиционирования засасывает в салон выхлопные газы. На автомобиле негерметичны патрубки от картера до клапана PCV, из-за чего подкапотное пространство насыщается выхлопными газами.

Частые неисправности системы вентиляции картера

С учетом приведенной выше информации становится понятно, что система вентиляции картера на современных двигателях является достаточно сложной. Выход из строя и нарушения в работе данной системы могут привести к ухудшению общей работоспособности ДВС, возникновению неполадок и уменьшению ресурса агрегата.

Сразу отметим, что проблемы с вентиляцией картера могут быть не так очевидны, однако проявляются в виде снижения мощности, увеличения расхода топлива, активного и быстрого загрязнения дроссельной заслонки и РХХ. Также в воздушном фильтре может появиться масло и т.д.

Что касается причин, клапан клинит как из-за засорения, так и в результате собственных повреждений. Как правило, первый вариант более распространен. Дело в том, что в картерных газах присутствует сажа, нагар и т.п.

Чем изношеннее мотор, (ЦПГ, другие узлы и системы), тем больше таких продуктов попадает в картер. Также различные загрязнения могут переноситься с микрочастицами масла. В результате грязь и отложения скапливаются в клапане, различных отверстиях, патрубках, каналах. Также рвутся и трескаются сами патрубки.

Как утверждают опытные автомеханики, c появлением стандарта Euro-4 стали встречаться двигатели, которые «падают» в аварийный режим работы при возникновении проблем с вентиляцией картера. При этом проведение компьютерной диагностики ничего не показывает, что усложняет поиск проблемы.

Также указанная система может доставить много неприятностей в зимний период. Дело в том, что в картерных газах содержатся частицы воды. Вода появляется из атмосферного воздуха, который засасывается мотором во время работы. После попадания в систему вентиляции, вода, которая находится в виде пара, может конденсироваться и скапливаться в отдельных местах системы вентиляции. После остывания ДВС влага попросту замерзает и становится льдом, закупоривая систему.

В результате вентиляция перестает работать, давление в картере растет и выдавливает масляный щуп, а двигатель и подкапотное пространство забрызгивает моторным маслом. Причем данная неисправность может возникнуть как на старом двигателе, так и на новом ДВС с небольшим пробегом. Дело в том, что далеко не на всех автомобилях система вентиляции имеет дополнительный обогрев.

Как работает вентиляция картера

Предназначение

Как и многие другие системы, массовым внедрением вентиляции картера мы обязаны борьбе за экологию. Вместе с парами масла, воды и бензина, обратно во впускной коллектор перенаправляются продукты неполного сгорания топлива, среди которых опасные для человеческого организма углеводороды.

Вторая немаловажная функция – регулировка давления в картерном пространстве. Повышенное давление ведет к выдавливанию сальников и к подпору слива масла с турбины. Моторное масло, охлаждающее и смазывающее детали турбокомпрессора, сливается в поддон самотеком. Из-за повышенного давления в картере слив масла нарушается, в результате чего на поверхностях образуются лаковые и коксовые отложения. На подшипниках, валу, появляются задиры, из-за чего турбина быстро выходит со строя. Благоприятно вентиляция картера влияет и на ресурс моторного масла, так как уменьшается количество смолистых и лакообразных веществ, кислоты.

Виды систем вентилирования картера

  • приточно-вытяжная. К картерным газам подмешивается небольшое количество чистого воздуха с атмосферы. Перед попаданием в картер, воздух проходит через фильтрующий элемент;
  • вытяжная закрытого типа, без дополнительной продувки воздухом (встречается реже).

Устройство

  • посредством разницы давлений на сторонах жиклеров. Такая система установлена на большинстве моделях ВАЗ с карбюраторной, инжекторной системой впрыска и многих иномарках;

  • посредством клапана PCV. В зависимости от генерации системы, дозирующий механизм представляет собой подпружиненный клапан, пневмоэлектрический либо электронно-управляемый клапан.

Принцип работы клапана PCV

Клапан необходим для дозирования порции подмешиваемых к чистому воздуху выхлопных газов и поддержания оптимального давления в картерном пространстве. Клапан грибовидной формы в нормальном состоянии возвратной пружиной отведен от седла – отверстие для прохода картерных газов открыто. На работающем двигателе и малом угле открытия дроссельной заслонки разряжение во впускном коллекторе, преодолевая усилие пружины, втягивает мембрану, закрывая тем самым клапан. По мере снижения разряжения во впускном коллекторе пружина отводит клапан от седла, открывая путь газам в коллектор.

Очистка картерных газов

Если подавать во впускной тракт нефильтрованные газы, то масляная взвесь приведет к быстрому загрязнению топливного фильтра, дроссельной заслонки и РХХ. В некоторых случаях концентрации масляной взвеси достаточно для работы дизельного двигателя при отключенной подачи топлива (в таких случаях говорят, что дизель ушел в разнос). Во избежание подобных ситуаций все системы вентиляции картера оснащаются маслоотделителем.

Простейший вариант конструкции – спиральные пружинки, установленные в сапуне. В новейших типах систем применяются лабиринтные, циклические маслоуловители либо их комбинация. Главная идея устройства – заставить поток газов контактировать со стенками маслоотделителя, в процессе чего частички масла укрупняются, оседают на поверхности и стекают обратно в поддон.

В системах с комбинированной фильтрацией уловители лабиринтного типа используются для грубой очистки газов. Поток проходит через маслоотражательные пластины, на которых оседают крупные частицы масла. После этого газы направляются к центробежному маслоуловителю. При движении по окружности корпуса, центробежная сила уводит частицы масла наружу, где они оседают на стенках отделителя.

Во избежание вредного влияния турбулентного потока, после двухступенчатой фильтрации газы направляются в успокоительную камеру. На всех стадиях оседающее на стенках масло стекает в магистраль обратного слива.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector